
 

 

  
Abstract—In this work, linear model predictive control of a 

nonlinear wind-turbine model is studied. The wind turbine process is 
represented by a set of local linear models which are obtained by 
piecewise linearization of the nonlinear mathematical model at 
different wind speeds. In order to provide zero steady-state off-set in 
case of a disturbance or model/plant mismatch the model is 
augmented with disturbance model. Estimates of the states and wind 
are obtained with Extended Kalman Filter (EKF). The estimated wind 
is used for computation of weights of corresponding local models. 
Linear model parameters and estimated states are then used within 
predictive control strategy for computation of control signals. Due to 
different control demands in different operating regimes of the wind 
turbine the weighting matrices are also scheduled for different wind 
speeds. Simulations on the 5MW wind-turbine model in turbulent 
wind and comparison with baseline PI controller show that the wind-
turbine system can be successfully controlled at different operating 
regions by this methodology. 
 

Keywords—Extended Kalman filter, Multiple model, Predictive 
control, Wind turbine.  

I. INTRODUCTION 
ODAY, wind power accounts for the largest share of 
renewable energy generation after hydropower, with 30% 

global annual growth. In 2012, the European Union installed 
capacity of wind turbines reached 105 000MW. The energy 
available in the wind is obtained through the wind conversion 
process, which is strongly nonlinear and challenging from the 
control system viewpoint as the power obtained from the wind 
is proportional to the third power of the effective wind speed. 
The wind turbines are operated in strong noisy environments 
and with severe constraints on admissible loads. The control 
problems are even more challenging when turbines are able to 
operate at variable speed and variable pitch. The best use of 
this type of turbine can only be achieved by means of 
multivariable controllers. The effective control strategy also 
reduces structural fatigue and load on the drive-train and tower 
structure, leading to potentially longer lifetime of the wind 
turbine [1]. 

Advanced control methods for addressing these issues have 
been investigated for two decades but apparently most 
commercial systems are still implemented using multiple 
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single-input-single-output (SISO) control loops [2],[3]. 
Conventional PI controllers have been tested in [3]. In [1] gain 
scheduling control is addressed in the context of linear 
parameter varying systems. The multivariable controller 
design is stated as an optimization problem with linear matrix 
inequalities. Barambones et al. proposed sliding mode control 
law for variable speed wind turbine in [4].  

The neural network controller is developed for control of 
pitch angle of wind turbines rotor blades in [5]. Soliman et al. 
developed a Multiple Model Predictive controller to control 
variable speed variable-pitch wind turbine over its full 
operating range [6]. Robust control techniques of the same 
type of wind turbine have been investigated in [7], [8]. To 
cope with nonlinear behavior of the system, adaptive control 
approaches have been proposed in [9], [10], [11], [12].  The 
fuzzy logic controller was applied in [13] to control a small 
size wind energy conversion system. In [14] the control 
scheme that consists of inner loop for generator torque 
regulation using a fuzzy control and outer loop for pitch 
control based on least square support vector machine is 
developed. In order to reduce the life-time fatigue and reduce 
the load in extreme gusts nonlinear predictive controller and 
LIDAR (Light Detection and Ranging) system for prediction 
of future wind is tested in [15].  

This work presents application of the multi-input multi-
output (MIMO) predictive control with constraints on the 
model of the 5MW wind turbine. In Section 2, nonlinear 
mathematical model of the wind turbine with the augmented 
wind model is addressed and the linearization of this model 
for different wind speeds is given. The operating regions and 
different control strategies in these regions are presented in 
Section 3. Section 4 describes the process of estimation of the 
states and immeasurable disturbances using multiple Extended 
Kalman Filters. The concept of predictive control with 
multiple linear models and constraints is introduced in Section 
5. Finally, in Section 6, simulation results for model of the 
5MW wind turbine in turbulent wind conditions are shown 
with brief conclusion. 

II. MATHEMATICAL MODEL OF A WIND TURBINE 
Today the most wide spread version of wind energy 

conversion system (WECS) is the horizontal axis wind turbine 
(HAWT) with a 3 blade upwind rotor (Fig. 1) due to its higher 
efficiency and lower cost-to-power ratio. The WECS can work 
by fixed and variable speed. Variable-speed generation is 
claimed to have a better energy capture and lower loading. In 
this section the first principle model of variable-speed 
variable-pitch HAWT is addressed.  
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The wind turbine characteristics can be divided into 4 parts: 
• Aerodynamics 
• Turbine mechanics 
• Generator dynamics 
• Actuator dynamics 

The available power of the wind in a circular cross section 
with the same area as the rotor disc is given by [16] :  

 
 𝑃𝑤 = 1

2
𝜌𝜋𝑅𝑚2𝑣3 (1) 

 
where 𝜌 is the air density (1.2 kg/m3), 𝑅𝑚 is the blade radius 
and 𝑣 is the effective wind speed. Only a fraction of the 
available power 𝑃𝑤 is can be converted to the rotor power 𝑃𝑟 . 
This ration is given by coefficient 𝑐𝑝 
 
 𝑃𝑟 = 𝑃𝑤𝑐𝑝 (2) 

 
Power coefficient 𝑐𝑝 have a theoretical upper limit of 0.593 
known as the Betz limit. The rotor blades convert the kinetic 
energy of the wind into mechanical energy, providing the 
torque 𝑇𝑟 on the rotor: 
 
 𝑇𝑟 = 𝑃𝑟

𝜔𝑟
 (3) 

 
where the 𝜔𝑟 is the rotational speed. The power coefficient 𝑐𝑝 
is a function of tip speed ratio 𝜆  and blade pitch angle 𝜃. The 
tip speed ratio 𝜆 is given as a ratio between effective wind 
velocity and the blade tip speed: 
 
 𝜆 = 𝑣

𝑅𝑚𝜔𝑟
 (4) 

 
The values of power coefficient are usually provided in the 
form of look-up table [17]. A three dimensional plot of 
efficiency coefficient 𝑐𝑝 is depicted on Fig. 2 and 
corresponding power curves for 𝜃 = 0,5,10, 20 degrees are 
shown in Fig. 3. 

 
Fig. 1 Horizontal axis wind turbine 

 

 
Fig. 2 The efficiency coefficient 𝑐𝑝 as a function of tip speed ratio 
and blade pitch angle (negative values were zeroed) 
 
As can be seen the power coefficient changes with tip-speed 
ratio variations for a specified pitch angle, and there is a single 
value of 𝜆 for which the corresponding 𝑐𝑝 is maximized. 

The generated power 𝑃𝑒  is given by: 
 
 𝑃𝑒 = 𝑇𝑔𝜔𝑔 (5) 
 
where 𝜔𝑔is rotational speed of the generator.  

The generator torque can be manipulated and is 
approximated by a first order system with time constant 𝜏𝑇: 
  
 𝑇�̇� = − 1

𝜏𝑇
𝑇𝑔 + 1

𝜏𝑇
𝑇𝑔𝑟  (6) 

 
where 𝑇𝑔𝑟 is the reference value for actuator’s output. The 
pitch of the blades is also changed by actuator with first order 
dynamics with time constant 𝜏𝜃: 
 
 �̇� = − 1

𝜏𝜃
𝜃 + 1

𝜏𝜃
𝜃𝑟 (7) 

 
where 𝜃𝑟 is the blade pitch angle reference value. 
 

 
Fig. 3 Power curves  
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Fig. 4 Schematic of the wind turbine mechanics 
 

The mechanistic part of the turbine (as depicted on Fig. 4) 
can be divided into rotor and generator side connected by a 
shaft. The dynamic nature of the shaft is described by the 
damping 𝐷𝑠 and spring constant 𝐾𝑠. The torques acting on 
each side of the transmission are related by the gear ratio 𝑁𝑔. 
The gearbox is used to step up the low angular speeds of the 
turbine to the high rotational speeds of the generator. 

 Using the Newton’s second law for rotating bodies the 
following equations can be formulated to describe the 
dynamics of the mechanical part of the wind turbine: 

 
 𝜔�̇� = 𝑃𝑟

𝜔𝑟𝐽𝑟
− 𝜔𝑟𝐷𝑠

𝐽𝑟
+ 𝜔𝑔𝐷𝑠

𝐽𝑟𝑁𝑔
− 𝛿𝐾𝑠

𝐽𝑟
 (8) 

 𝜔�̇� = 𝜔𝑟𝐷𝑠
𝑁𝑔𝐽𝑔

− 𝜔𝑔𝐷𝑠
𝑁𝑔2𝐽𝑔

+ 𝛿𝐾𝑠
𝐽𝑔𝑁𝑔

− 𝑇𝑔
𝐽𝑔

 (9) 

 �̇� = 𝜔𝑟 −
𝜔𝑔
𝑁𝑔

 (10) 

 
where variable 𝛿 describes the twist of the shaft, 𝐽𝑟  and 𝐽𝑔 are 
the rotor and generator inertia,  respectively. The moments of 
inertia of the shafts and gearbox are neglected because they 
are small compared with moment of inertia of the rotor and 
generator.  

The energy available in the wind varies as the cube of the 
wind speed, so the characteristic of the wind resource is 
critical to all wind turbine control strategies. In the paper the 
effective wind velocity is modeled as a mean wind velocity 𝑣𝑚 
superimposed by turbulent wind velocity 𝑣𝑡 to simulate the 
temporal variations of the wind: 

 
 𝑣 = 𝑣𝑚 + 𝑣𝑡 (11) 
 

 

 
Fig. 5 Filter parameters for different wind speed 

 
 
 

The turbulent part of the wind velocity is modeled as a 
second order filter driven by a white noise process [18]: 
 𝑣(𝑡) = 𝐾𝑣

(𝑝1𝑠+1)(𝑝2𝑠+1)
𝑒(𝑡) (12) 

 
where 𝑒(𝑡) is a white noise with unity variance. The 
parameters 𝑝1 , 𝑝2,𝐾𝑣 are found by second order approximation 
of the wind power spectrum density dominant in unstable 
wind conditions [19]: 

 

 𝑆𝑝(𝑓) 𝑓
𝑣𝑓𝑟
2 =

105 𝑓

1+15 ℎℎ𝑖

�1+33 𝑓

1+15 ℎℎ𝑖

�

5
3

1−ℎ
ℎ𝑖

�1+15 ℎℎ𝑖
�
2
3
 (13) 

 
where 𝑓 is the frequency, ℎ is the nacelle height and ℎ𝑖   is the 
height of the lowest inversion. Dependency of the parameters 
𝑝1, 𝑝2,𝐾𝑣  on the mean wind speed is presented on Fig. 5. 
 
 

The equivalent state-space formulation of the wind speed 
model is:  

 
 𝑣�̇� = 𝑣�̈� (14) 
 𝑣�̈� = − 1

𝑝1𝑝2
𝑣𝑡 −

𝑝1+𝑝2
𝑝1𝑝2

𝑣�̇� + 𝐾𝑣
(𝑝1𝑝2)

𝑒 (15) 
 

Equations (5)-(12) are combined to yield the nonlinear 
model of the wind turbine: 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜔�̇�
𝜔�̇�
�̇�
�̇�
𝑇�̇�
𝑣�̇�
𝑣�̈� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑃𝑟(𝜔𝑟,𝜃,𝑣𝑚+𝑣𝑡)

𝜔𝑟𝐽𝑟
− 𝜔𝑟𝐷𝑠

𝐽𝑟
+ 𝜔𝑔𝐷𝑠

𝐽𝑟𝑁𝑔
− 𝛿𝐾𝑠

𝐽𝑟
𝜔𝑟𝐷𝑠
𝑁𝑔𝐽𝑔

− 𝜔𝑔𝐷𝑠
𝑁𝑔2𝐽𝑔

+ 𝛿𝐾𝑠
𝐽𝑔𝑁𝑔

− 𝑇𝑔
𝐽𝑔

𝜔𝑟 −
𝜔𝑔
𝑁𝑔

− 1
𝜏𝜃
𝜃

− 1
𝜏𝑇
𝑇𝑔

𝑣�̈�
− 1

𝑝1𝑝2
𝑣𝑡 −

𝑝1+𝑝2
𝑝1𝑝2

𝑣𝑡
̇

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0 0
1
𝜏𝜃

0

0 1
𝜏𝑇

0
0

0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�
𝜃𝑟
𝑇𝑔𝑟

� +

                                        

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0
𝐾𝑣

(𝑝1𝑝2)⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑒  (16) 

 
The slow varying element of the wind velocity 𝑣𝑚 is 

assumed to be known. The fuzzy global model of the process 
is obtained through piecewise linearization.  

 
 
 
 
The nonlinear system: 
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 �̇�(𝑡) = 𝑓(𝑥(𝑡),𝑢(𝑡)) (17) 
 𝑦(𝑡) = 𝑔(𝑥(𝑡),𝑢(𝑡)) (18) 
  
where 𝑥(𝑡) ∈ 𝑅𝑛,𝑢(𝑡) = 𝑅𝑝,𝑦(𝑡) = 𝑅𝑞 represent the states, 
input and output, respectively. The system is linearized around 
the operating point using the Taylor’s series approximation. 
This results in a series of M local linear models of the form: 

 

  
( ) ( ) ( )
( ) ( ) ( )

i i

i i i

t t t
t t t

δ δ δ
δ δ δ

= +
= +

x A x B u
y C x D u

 (19) 

 
where 

   

( )

( )

( )

( )

( , ) ,

( , ) ,

( , ) ,

( , ) ,

, ,

opi opi
i

opi opi
i

opi opi
i

opi opi
i

opi opi
i i i i

opi
i i

f x u x u
x

f x u x u
u

g x u x u
x

g x u x u
u

x x x u u u

y y y
δ δ

δ

∂
=

∂
∂

=
∂

∂
=

∂
∂

=
∂

= − = −

= −

A

B

C

D

  (20) 

 
As the controller will be working in all operating modes it is 

beneficial to convert the incremental model into affine and 
discretize to yield model in the form: 
 
 𝒙𝒊(𝑘 + 1) = 𝑨𝑖𝑥(𝑘) + 𝑩𝑖𝒖(𝑘) + 𝑬𝑖  (21) 
 𝒚𝑖 = 𝑪𝑖𝒙(𝑘) + 𝑭𝑖  (22) 

 
The model is assumed not to have direct feed through 

so 𝐷 = 0. In order to provide off-set free control in case of 
unmeasured disturbances and modeling errors the model is 
augmented with the model of unmeasured input disturbances 
with integral character [19]: 

 
 𝑑(𝑘 + 1) = 𝑑(𝑘) + 𝑒(𝑘) (23) 
 𝑝(𝑘 + 1) = 𝑝(𝑘) + 𝑒(𝑘) (24) 
 
The augmented system is then given as: 
 

�
𝒙(𝑘 + 1)
𝑑(𝑘 + 1)
𝑝(𝑘 + 1)

� = �
𝑨𝑖 𝑩𝑖
0
0

1
0

0
1
� �
𝒙(𝑘)
𝑑(𝑘)
𝑝(𝑘)

� + �
𝑩𝑖
0
0
� 𝒖(𝑘) + �

𝑬𝑖
𝑒(𝑘)
𝑒(𝑘)

� (25) 

 𝑦(𝑘) = [𝑪𝒊 0 0] �
𝑥(𝑘)
𝑑(𝑘)
𝑝(𝑘)

� + 𝑭𝒊 (26) 

 
The augmented model is used for state estimation in extended 
Kalman filter.  
 

III. OPERATING MODES OF THE WIND TURBINE 
The objective for controlling a wind turbine is to maximize 

power production and minimize mechanical stress on the 
components of the wind turbine. The wind turbine can be 
operated in four different regimes (Fig. 6) depending on the 
wind speed. If the wind is too low to warrant turbine startup 
the blades are pitch to angle that generates minimum 
aerodynamic torque. In the region I where the wind speed 
large enough for machine start-up the rotational speed of the 
rotor 𝜔𝑟is kept at its lowest allowable level. The control 
strategy is to keep the pitch of the blades at the optimum value 
and control the system by manipulating the generator torque 
𝑇𝑔. In the region II the rotational speed of the rotor 𝜔𝑟is within 
the limits 𝜔𝑟,𝑚𝑖𝑛 < 𝜔𝑟 < 𝜔𝑟,𝑚𝑎𝑥 and the blade pitch is kept at 
the optimum value providing the maximization of 𝑐𝑝 and 
aerodynamic torque. The maximal value of 𝑐𝑝is for blade pitch 
𝜃 = 0 and tip speed ratio 𝜆 = 7.5. Each wind speed has 
corresponding rotor speed that generates greatest possible 
aerodynamic torque.  

The primary objective is to keep tip speed ratio at its 
optimal value  𝜔𝑜𝑝𝑡 = 𝑅𝑚𝜆𝑜𝑝𝑡

𝑣
   to maximize turbine’s 

aerodynamic efficiency. In the region III the rotational speed 
of the rotor 𝜔𝑟is at its maximum but generated power 𝑃𝑒 is 
below its nominal value. In this transition region is system is 
controlled the same way as in the region II. In the top region 
IV both the rotational speed of the rotor 𝜔𝑟 and generated 
power 𝑃𝑒 are at their rated values. In this region the torque is 
kept constant and blade pitch 𝜃 is used to compensate the 
variation in wind power. 

 

 
Fig. 6 Operation modes of the NREL wind turbine 
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IV. STATE ESTIMATION WITH EXTENDED KALMAN FILTER  
Not all the states of the variable speed wind turbine system 

can be measured and furthermore the measurement of 
available outputs is bound to be corrupted with measurement 
noise. In order to estimate the states of the nonlinear model the 
extended Kalman Filter (KF) is designed. The extended KF is 
the nonlinear extension of the linear Kalman filter where the 
model is nonlinear [20]: 

 
 𝑥(𝑘 + 1) = 𝑓�𝑥(𝑘),𝑢(𝑘)� + 𝑤 (27) 
 𝑦(𝑘) = 𝑔�𝑥(𝑘)� + 𝑣 (28) 

 
where 𝑤 and 𝑣 are process and measurement noises, which are 
assumed to have Gaussian distribution with covariances 𝑸𝑘 
and 𝑹𝑘  . Since the system is nonlinear the Jacobians are used 
instead of nonlinear expressions to compute covariance and 
consequently Kalman gain. The update equations of the EKF 
are given as: 

 
𝒙�(𝑘 + 1|𝑘) = 𝑓�𝒙�(𝑘|𝑘),𝒖(𝑘)� + 

 𝑲(𝑘)�𝒉(𝑘) − 𝑔�𝑥�(𝑘|𝑘)�� (29) 
 

 𝑲(𝑘) = 𝑷𝑯𝑇(𝑘)
𝑯(𝑘)𝑷𝑯𝑇(𝑘)+𝑹𝒌

 (30) 

where 𝑷 is the estimation covariance error matrix, 𝒉(𝑘) is 
the measured output vector, 𝑲(𝑘)is the Kalman gain. The 
covariance error matrix is obtained as a solution of algebraic 
Riccati equation: 

 

 𝑷 = 𝑸𝒌 + 𝑭(𝑘)𝑷𝑭𝑇(𝑘) −
�𝑭𝑇(𝑘)𝑯(𝑘)��𝑭𝑇(𝑘)𝑯(𝑘)�

𝑇

�𝑯𝑇(𝑘)𝑯(𝑘)+𝑹𝒌�
 (31) 

 
The linearization of the functions 𝑓(𝑥,𝑢),𝑔(𝑥) is 

accomplished off-line during the modeling process and the 
Jacobians can be computed using the linearized local models 
matrices as: 

 
 𝑭(𝑘) = 𝛿𝑓

𝛿𝑥
� = 𝐴𝑖𝒙(𝑘)=𝒙�(𝑘|𝑘)  (32) 

 𝑯(𝑘) = 𝛿𝑔
𝛿𝑥
� = 𝐶𝑖𝒙(𝑘)=𝒙�(𝑘|𝑘)  (33) 

 

V. MODEL-BASED PREDICTIVE CONTROL 
In this chapter the concept of model predictive control 

(MPC) is presented. Model-based predictive control (MPC) 
has been successfully used in many industrial applications due 
to its ability to handle MIMO control problems with 
constraints on the system variables [21]. The objective for 
control of a wind turbine is to maximize power production and 
minimize the mechanical stress on the components of the wind 
turbine. In order to control the wind turbine in the whole 
spectrum of wind speeds the parameters of model are 
scheduled based on the current mean wind speed. The state-
space model based predictive control is based on linear time 
varying model that is obtained at every sampling interval and  

 
Fig. 7 Multiple model predictive control scheme 

 
its parameters are used for the entire prediction horizon 𝐻𝑝:  
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 (34) 

 
where 𝑝𝑖  are the weights of each local model and are a 
function of the current wind speed [22]. The control structure 
for the model predictive control with multiple local models is 
shown in the block diagram in Fig. 7. 

 The computation of a control law of MPC is based on 
minimization of the following criterion: 

 

  ( ) ( )
( ) ( )

T

MPC

s s

J = − − + ∆ ∆

− −

 

Y W Q Y W UR U +

            U U S U U
 (35) 

 
with input constraints: 
 

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗) ≤ 𝑢𝑚𝑎𝑥 (36) 
  

 
 ∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑗) ≤ ∆𝑢𝑚𝑎𝑥 (37) 
 
where 𝑗 = 1,2, … ,𝐻𝑐 − 1,  𝐻𝑐  is the control horizon, Y



  is a 
vector future prediction of the system,   W  is a vector of 
reference trajectory and ,Q R,S   are positive definite 
weighting matrices. The last term (𝑼 − 𝑼𝑠) represents the 
deviation from inputs that led to linearization point of the 
model. The predictor 𝒀� = [𝑦(𝑘) … 𝑦(𝑘 + 𝑁𝑝)]𝑇 for any 
given prediction and control horizons for control sequence 
𝑼 = [𝑢(𝑘) … 𝑦(𝑘 + 𝑁𝑐 − 1)]𝑇 can be computed using the 
iterative algorithm: 

  𝒀� = 𝚽𝒙𝒙(k) + �𝚽𝟏
𝚽𝟐

�𝑼 + 𝚽0 (38) 

with  

 Φ𝑥 = �
𝑪𝑨
𝑪𝑨𝟐
⋮

𝑪𝑨𝑁𝑝−1
�, Φ0 = �

𝑪𝑬 + 𝑭
𝑪𝑨𝑬 + 𝑪𝑬 + 𝑭

⋮
𝑪𝑨𝑵𝒑−𝟏𝑬 + ⋯+ 𝑪𝑬 + 𝑬

� (39) 

and 
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 Φ1 = �
𝑪𝑩 0 … 0
𝑪𝑨𝑩 𝑪𝑩 … 0
⋮

𝑪𝑨𝑵𝒄−𝟏𝑩
⋮

𝑪𝑨𝑵𝒄−𝟐𝑩
⋱
…

0
𝑪𝑩

� (40) 

 

 Φ2 = �
𝑪𝑨𝑵𝒄𝑩 … 𝑪𝑨𝟐𝑩        𝑪𝑩∑ 𝑨𝑗1

𝑗=0
⋮ ⋮ ⋮ ⋮

𝑪𝑨𝑵𝒑−𝟏𝑩 … 𝑪𝑨𝑵𝒑−𝑵𝒄+𝟏𝑩 𝑪𝑩∑ 𝑨𝑗𝑁𝑝−𝑁𝑐
𝑗=0

�(41) 

 
The minimization of the cost criterion (35) can be transformed 
into a quadratic programming problem: 

 
 𝐽𝑀𝑃𝐶 = 𝒖𝑻𝑯𝒖 + 𝒇𝒖 (42) 
 
with constraints: 
 𝑨𝒖 ≤ 𝒃 (43) 

  
and solved numerically at each sampling instant.    
 

VI. IMPLEMENTATION 
The wind turbine that is being considered in the paper is a 

wind turbine model widely known as “NREL offshore 5-MW 
baseline wind turbine” that was developed by “National 
Renewable Energy Laboratory” of the United States of 
America. This wind turbine is a conventional three-bladed 
upwind variable-speed variable blade-pitch-to-feather-
controlled turbine. The parameters of the model are presented 
in Table I [23].  
 

Table I NREL wind turbine parameters 
parameter units value 
nominal power 𝑃𝑒,𝑛𝑜𝑟𝑚 [MW] 5 
rated rotor speed 𝜔𝑟,𝑚𝑎𝑥 [rad/s] 1.2671 
drive-train spring const. 𝐾𝑠 [N.m/rad] 867.637E6 
drive-train damp. const. 𝐷𝑠 [N.m/rad.s] 6.215E6 
generator inertia 𝐽𝑔 [kg.m2] 534.116 
rotor inertia 𝐽𝑟 [kg.m2] 3.8768E7 
blade radius 𝑅𝑚 [m] 63 
gear ratio 𝑁𝑔 [-] 97 
max blade pitch 𝜃𝑚𝑎𝑥 [deg] 90 
min blade pitch 𝜃𝑚𝑖𝑛 [deg] 0 
max bl. pitch rate ∆𝜃𝑚𝑎𝑥 [deg/s] 8 
min bl. pitch rate ∆𝜃𝑚𝑖𝑛 [deg/s] -8 
max gen. torque 𝑇𝑔,𝑚𝑎𝑥  [N.m] 47402.97 
min gen. torque 𝑇𝑔,𝑚𝑖𝑛 [N.m] 0 
max gen. torque 
rate ∆𝑇𝑔,𝑚𝑎𝑥  

[N.m/s] 15000 

min gen. torque 
rate ∆𝑇𝑔,𝑚𝑖𝑛 

[N.m/s] -15000 

pitch actuator const. 𝜏𝜃 [s] 0.12 
gen. actuator const. 𝜏𝑇 [s] 0.1 

 

 
Fig. 8 Fuzzy membership functions 

 
Seventh order nonlinear model (16) was implemented iin 
MATLAB with multiple Kalman filters and MPC controller. 
The controller is compared with the baseline controller 
developed in [23] that uses two independent control loops for 
torque and blade pitch angle control and measurement filter. 
The control of the torque is proportional to the filtered 
generator speed and the control of blade pitch angle is based 
on the gain scheduled PI controller. In the proposed control 
scheme the wind turbine is controlled in all regions. As the 
dynamics of the system is different for different wind speeds a 
local model was obtained by linearization of the nonlinear 
model of the process. 21 local models were developed for 
mean wind speed 𝑣 ∈ (4,25). The parameters of the system 
between these local models are obtained using fuzzy 
membership function as shown on Fig. 8. The sampling period 
𝑇𝑠 is chosen to be 0.025s. It is assumed that only the generator 
speed 𝜔𝑔, blade pitch 𝜃 and output power 𝑃𝑒  can be measured 
and the mean wind speed 𝑣𝑚 is assumed to be known:  

  

 ℎ(𝑘) = �
𝑥2
𝑥4
𝑥2𝑥5

� = �
𝜔𝑔
𝜃
𝑃𝑒
� (44) 

 
The other system states and unmeasured disturbances are 

estimated via extended Kalman filter. Due to imperfection of 
the measurement device the measurement noise is added to the 
output of the wind turbine model:  

 

 ℎ(𝑘) = �
𝜔𝑔
𝜃
𝑃𝑒
� + 0.03 �

𝜔𝑔𝑒(𝑘)
𝜃𝑒(𝑘)
𝑃𝑒𝑒(𝑘)

� (45) 

 
where 𝑒(𝑘) is a Gaussian white noise. All the states of the 
augmented model are observable as the row rank of the 
observability matrix equals the number of states: 
 

 𝑟𝑎𝑛𝑘 �
𝐶
𝐶𝐴
⋮

𝐶𝐴8
� = 9 (46) 

 
Since the wind does not affect the actuators’ states the 

process noise is added to these states in order to obtain 
nonzero Kalman gain. The process noise covariance matrix is 
then given as: 

 

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

v [m/s]

p i [-
]

M21M1 M2
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 𝑄𝑘 = [𝐵 𝐵𝑣 𝐵𝑝𝑑]𝑀 �
𝐵𝑇
𝐵𝑣𝑇

𝐵𝑝𝑑𝑇
� (47) 

 

 𝑀 =

⎣
⎢
⎢
⎢
⎡
0.001 0 0 0 0

0 0.1 0 0 0
0
0
0

0
0
0

1
0
0

0
0.001

0

0
0

0.1⎦
⎥
⎥
⎥
⎤
 (48) 

 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0
𝑇𝑠
𝜏𝜃
0
0
0
0
0

0
0
𝑇𝑠
𝜏𝑇
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐵𝑝𝑑 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0
0 0
0
0
0
0
0
𝑇𝑠
𝜏𝜃
0

0
0
0
0
0
0
𝑇𝑠
𝜏𝑇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (49) 

 𝐵𝑣 = �0 0 0 0 0 0 𝐾𝑣𝑇𝑠
𝑝1𝑝2

 0 0�
𝑇
 (50) 

 
The measurement covariance matrix was set to [24]: 

 

 𝑅𝑘 = 2
500

⎣
⎢
⎢
⎢
⎢
⎡�
0.03𝜃
3
�
2

0 0

0 �0.03𝜔𝑔
3

�
2

0

0 0 �0.03𝑃𝑒
3

�
2

⎦
⎥
⎥
⎥
⎥
⎤

 (51) 

 
Model predictive controller was employed for computation of 
manipulated variables. Prediction and control horizons were 
set to: 
 𝐻𝑝 = 2𝑠,𝐻𝑐 = 1𝑠 (52) 

 
For such values acceptable performance was obtained and 

these values does not represent big computational burden for 
the processing unit. The MPC was implemented with 
constraint on the blade pitch and generator torque given by: 

 
 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 (53) 
 𝑇𝑔,𝑚𝑖𝑛 ≤ 𝑇𝑔 ≤ 𝑇𝑔,𝑚𝑎𝑥 (54) 
 ∆𝜃𝑚𝑖𝑛 ≤ ∆𝜃 ≤ ∆𝜃𝑚𝑎𝑥 (55) 
 ∆𝑇𝑔,𝑚𝑖𝑛 ≤ ∆𝑇𝑔 ≤ ∆𝑇𝑔,𝑚𝑎𝑥  (56) 
 

The weights for the MPC were also scheduled using fuzzy 
membership function and their values for different wind 
speeds are presented in Table II. 

 
Table II MPC weights scheduling 

v 4-10 m/s 11m/s 12-25 m/s 
Q �102 0

0 10−10
� �102 0

0 10−10
� �101 0

0 10−10
� 

R �106 0
0 10−2

� �104 0
0 10−3

� �103 0
0 10−3

� 

S �105 0
0 0

� �101 0
0 0

� �0 0
0 0� 

 

The acceptable performance is obtained with Kalman filter 
estimation scheme. The measured outputs affected by the 
noise are presented in Fig. 9. Only 5s of the experiment is 
shown for clarity. To illustrate the precision of the estimates, 
the state estimation errors Δ𝑥 = 𝑥 − 𝑥� are also presented in 
Fig. 10. 

 
Fig. 9 Estimation of the states (blue solid – measured outputs, red 

dotted - estimates) 

 
Fig. 10 Estimation errors from true states   
 
The performance of the proposed predictive control was 

compared with baseline controller. The whole 10 min 
simulation with predictive controller with stochastic wind 
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disturbance (Fig. 11) is presented in Figs. 12, 13 and 14. The 
same wind sequence was used for both controllers. The 
control performance in terms of mean values, standard 
deviations and sum of control increments are also shown in 
Table III in order the prove the improved performance. Table 
shows the 50% decrease of standard deviation of output power 
and also decrease of oscillation of the control torque and thus 
reduction of load. The MPC strategy does not have significant 
impact on the mean values of controlled signals.  

  
Table III Control performance comparison 

 PI control MPC 

Mean 𝜔𝑔 122,9083 122,9091 
Mean 𝑃𝑒 5,000E6 5,000E6 
Std 𝜔𝑔 0,43 0,39 
Std 𝑃𝑒 5,03E3 2,07E3 

�∆𝜃 0,0434 0,027 

�∆𝑇𝑔 4,49E4 2,49E4 

 

 
Fig. 11 Stochastic wind disturbance 

 
Fig. 12 Performance evaluation – output values (blue – baseline PI 

controller, red– MPC ) 
 

 
Fig. 13 Performance evaluation – pitch angle and generator torque  

(blue – baseline PI controller, red – MPC ) 

 
Fig. 14 Performance evaluation – pitch angle and generator torque  

speed of change (blue – baseline PI controller, red– MPC ) 
 
The proposed control strategy was also tested through 

simulation with turbulent wind that drives the turbine through 
different operating modes. With the MPC weights given in the 
Table II both the output power and rotor speed are tracked 
accurately in region IV. For low wind speeds optimal tip speed 
ratio is the main aim of control.  

The turbulent wind affecting the wind turbine during the 
simulation is presented in Fig. 15. The control courses for 
reference tracking test are presented in Fig. 16 and 17. In the 
region II the main focus of the control is to maximize the 
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power so the power coefficient plot during the experiment is 
also presented in Fig. 18. 

 
 
Fig. 15 Turbulent wind in the simulation 

 
Fig. 16 Wind turbine’s power output 𝑃𝑒 and generator speed 𝜔𝑔 in 
simulation with turbulent wind 
 

 
Fig. 17 Blade pitch angle 𝜃 and generator torque 𝑇𝑔 in simulation 
with turbulent wind 

 
Fig. 18 Tip speed ration in simulation with turbulent wind 
 

In the region II the large variation of the electric power 
𝑃𝑒can be observed. This is due to the fact that the main focus 
is put on tracking of the rotor rotational speed 𝜔𝑟 and 
consequently optimal tip speed ratio 𝜆. In this region the 
produced power 𝑃𝑒 is closely linked with the generator torque 
𝑇𝑔. 

VII. CONCLUSION 
In the paper, fuzzy predictive control concept is applied to 

the model of 5MW wind turbine. It was assumed that 
measurement noise was present and not all the states are 
measurable to make the control more realistic. The weight 
scheduled predictive controller was implemented for control 
of the wind turbine in all operating regimes in a smooth way 
under the turbulent wind conditions. It has been shown that 
significant improvements in terms of control performance can 
be obtained with MPC strategy.  
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